skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schmetterling, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Human-induced hybridization among genetically distinct groups of fish is a widespread and complex problem in fisheries management. A particularly challenging facet of human-induced hybridization is deciding which fish should be prioritized for conservation action or investment, and which should not. The increasing availability of genomic data in fisheries management demands that explicit hybridization frameworks and associated hybridization thresholds be developed, as increasing resolution will inevitably demonstrate that small amounts of nonnative ancestry are present in populations or species that were previously thought to be nonhybridized. A key question then becomes, how do we make rational decisions regarding resource prioritization for populations or species with, for example, 10, 1, 0.1 or even 0.01% nonnative ancestry? We use extensive data from Westslope Cutthroat Trout Onchorhynchus lewisi to describe how objective, data-based decision frameworks can be developed to help managers conserve genetic variation, while minimizing nonnative ancestry and the risk of outbreeding depression. While the conservation implications of hybridization are nuanced and context-dependent, the approach described herein is general and can be extended to other species. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  2. Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions. 
    more » « less